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ABSTRACT

A recently introduced iterative complexity- and entropy-constrained subband quantization design algorithm is
generalized and applied to medical image compression. In particular, the corresponding subband coder is used to
encode computed tomography (CT) axial slice head images, where statistical dependencies between neighboring
image subbands are exploited. Inter-slice conditioning is also employed for further improvements in compression
performance. The subband coder features many advantages such as relatively low complexity and operation over
a very wide range of bit rates. Experimental results demonstrate that the performance of the new subband coder
is relatively good, both objectively and subjectively.

1 INTRODUCTION

Subband image coding of 8-bit/pixel natural images has been studied extensively in the literature.! Common
to all subband image coding systems is the decomposition of the input image into subband images using a two-
dimensional, mostly separable, filter bank. The resulting subband images are then quantized and entropy coded
separately. Since the subband images typically have different statistical properties, a bit allocation algorithm is
usually used to distribute bits among the subbands.

The subband image coder proposed in references??® is different in that the design algorithm optimizes the
subband quantizers and associated entropy coders jointly within and across the subbands in a complexity- and
entropy-constrained framework. Advantages of the design algorithm are that it provides much greater control on
the complexity-performance tradeoffs by using multistage residual vector quantizers,®5 and that no bit allocation



algorithm is required. This coder works very well for quasi-stationary signals such as most natural images. It can
be designed to match the global statistics of a class of images by using a representative training sequence, and
can be adapted to local statistics that are specific to individual images through the use of adaptive arithmetic
coding.67

Like many natural images, medical images that are acquired from the same anatomical section using the same
imaging modality are also quasi-stationary. A specific class of images, such as computed tomography (CT) axial
slice head images, features similar global structural appearances due to the similarity in anatomical and tissue
structures among different patients. On the other hand, anomalies such as pathologies or image artifacts, different
density tissues, and different imaging conditions, produce image patterns that are not part of the training sequence.
In medical imaging, some of these local statistics represent very critical information, and failing to reproduce such
unique patterns can significantly impair the usefulness of the compressed medical image.

The problem of subband coding medical images using the coder proposed in references®® is addressed in this
paper. Although there are many similarities between natural and medical images, the problem of subband coding
medical images is very different. Medical images are obtained from a variety of devices, and the images produced
have different characteristics (e.g. dynamic range, spatial resolution) as well as distinct statistical dependencies.
Performance can be improved by designing the filters, decomposition structures, quantizers, and entropy coders
differently. For example, medical images contain a significant amount of both high and low frequency information.
Thus, uniform decompositions fair better than the octave-band (or wavelet) decomposition frequently used in
natural image subband coding. Moreover, a higher degree of fidelity is required in the compressed-decompressed
images. Experimental work® shows that the choice of filters and filter design parameters has little or no effect on
the reproduction quality in the low bit rate range. However, as will be discussed in this paper, filters do affect the
subband coder’s performance both objectively and subjectively in the high bit rate (high fidelity) range. Another
problem associated with high fidelity subband coding is the large complexity usually required by the quantizers
and corresponding entropy coders. Fortunately, since the proposed subband coder employs multistage residual
vector quantizers, the complexity associated with both quantization and entropy coding is still relatively low.

The subband coder described in references?? exploits both statistical intra-band and inter-band dependencies
within an image simultaneously, mainly through complexity-constrained high order conditional entropy coding.
In this work, inter-band dependencies both within a slice image and between slice images are exploited, resulting
in a 5-10 % improvement in compression-complexity performance for the same reproduction quality. Next, we
provide a brief description of the coder’s components. This is followed by a discussion of design and complexity
issues. This paper concludes with a discussion of the application of the subband coder to medical images and a
presentation of some CT Head image coding experimental results.

2 THE SUBBAND CODER

Figure 1 shows the block diagram of the subband encoder used in this work. As is the case in conventional
subband coding, the input image is first decomposed into M subband images using an analysis transformation.
In this work, we employ a uniform tree-structured decomposition which is based on 2-band exact reconstruction
filter banks. Each subband image is then encoded using a sequence of P, (1 < m < M) residual vector quan-
tization (RVQ) fixed length encoders. Multistage RVQ is instrumental in drastically reducing the complexity of
encoding/decoding as well as entropy coding, while still maintaining good rate-distortion performance. Advan-
tages of multistage RVQs will be described in the following sections. Although encoding optimality can generally
be achieved through exhaustive searching of the RVQ stage codebooks in all subbands (i.e. embedding the syn-
thesis transformation in the encoding procedure), experiments have shown that dynamic M-search® of the stage
codebooks in each subband separately usually leads to the best complexity/performance tradeoffs.

The output symbol of each of the stage vector quantizers is fed into an entropy coder driven by a high order
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Figure 1: Basic block diagram of the subband encoder.




stage statistical model that is governed by a finite state machine (FSM). The FSM allows the statistical model to
utilize information about previously coded stage vectors. A nonlinear function F given by u = F(s;,s2,...,8p),
where 51, 83, . .., S are n conditioning symbols, or previous outputs of particular fixed-length RVQ stage encoders,
is used here to determine the conditioning state u. As will be described in the next section, F' is a many-to-one
function that is represented by a table mapping each combination of realizations of conditioning random variables
into a conditioning state. Since only previously coded symbols are used by the FSM, no side information is
necessary and the decoder can track the state of the encoder by only storing the same table. Finally, the output
bits of the entropy coders are combined together and sent to the channel.

3 DESIGN AND IMPLEMENTATION ISSUES

The algorithm used to design the subband coder minimizes iteratively the expected distortion subject to a
constraint on the complexity-constrained high order conditional entropy ‘of the stage vector quantizers (VQs).
The popular squared error measure is used here as the distortion measure. This design algorithm is based on a
Lagrangian minimization, and is a generalization of entropy-constrained algorithms described in.}%!1% Details
of the joint optimality conditions used in the development of the algorithm and convergence issues are discussed
elsewhere.3

Given a Lagrangian parameter, A, which is chosen based on the overall rate and distortion of the subband
system (i.e. no bit allocation algorithm is required), the entropy-constrained joint subband quantization algorithm
consists of three optimization steps. The encoder optimization step involves exhaustively searching all RVQ stage
codebooks, a task which requires a huge computational load. A large reduction in complexity can be achieved by
using dynamic M-search. This results in only a small loss of performance. The decoder optimization step consists
of using the Gauss-Seidel algorithm® to minimize iteratively the average distortion between the input and the
synthesized reproduction of all stage codebooks in all subbands. The complexity can be drastically reduced by,
for example, grouping neighboring stage codebooks in neighboring subbands and jointly optimizing each group
independently. This typically results in less than a 0.10 dB loss in signal-to-noise (SNR) performance.

Since actual entropy coders are not used explicitly in the design process, the entropy coder optimization step
is equivalent to a high order statistical modeling procedure. In terms of complexity (i.e. computational load
and memory requirements), high order statistical modeling is potentially the most demanding task of the design
algorithm. However, using the multistage residual structure not only substantially reduces the large complexity
demands, usually associated with high order conditional entropy coding, but also makes exploiting high order
statistical dependencies much easier by producing multiresolution approximations of the input subband images.
However, there are still many issues to be addressed. Multistage RVQs reduce the complexity because the output
alphabet of the stage quantizers is typically very small (e.g., 2, 3, or 4), but the complexity of a stage entropy
coder is still exponentially dependent on its order (number of conditioning symbols or random variables) and/or
the output alphabet sizes of the stage quantizers. Moreover, multistage RVQs also introduce another dimension to
the statistical modeling problem, which significantly increases the number of possible combinations of conditioning
symbols. Finally, many of the frequencies of combinations of conditioning symbols, gathered during the training
process and used as estimates for probabilities, have zero values, producing empty states. This complicates the
encoding stage because a combination of conditioning symbols corresponding to an empty state may occur. This
is the so-called empty state problem, a problem usually associated with finite state machines.

In reference,? a complexity-constrained statistical modeling algorithm is proposed that attempts to simultane-
ously solve the above problems. To help illustrate the algorithm, Figure 2 shows the inter-stage, inter-band, and
intra-band conditioning scheme employed in this work. Each image shown in the figure is a multistage approxi-
mation of a particular slice image. Note that statistical dependencies both within and across slice images can be
exploited. For each stage (m,p) in each subband m, a 5-dimensional initial region of support R, , containing
a sufficiently large number Ry, , of conditioning symbols is first chosen. Then, the ny, 5, npymp << Ry p, con-
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Figure 2: Inter-stage, inter-band, and intra-band conditioning scheme within an image sequence.



ditioning symbols s', ..., s"™* that lead to the smallest n,, ,th order conditional entropy H(Jmpls*,...,s" ™)
are located by building a special tree and using the dynamic M-search algorithm.

The next step of the algorithm is to find orders of all stage statistical models such that the average entropy
in all subbands given a fixed level of complexity, expressed here in terms of total number of probabilities to be
computed /stored, is minimized. The process described above is repeated for each stage (m, p) and many values of
N p, producing, let’s say, Ly, , complexity-entropy pairs per stage. For each complexity-entropy pair, complexity
is given by N p = SpmpNmp, where Sy, is the number of all combinations of realizations of the conditioning
symbols and Ny, , is the output alphabet size of stage p in band m. Once all complexity-entropy pairs are
obtained, a tree with szl P, branches, where P, is the number of stage codebooks in the mth subband, can
be built. Each branch of the tree is a ynary tree of length Ly, p, and each node represents a complexity-entropy
pair. The generalized BFOS algorithm'? is then used to minimize the average entropy subject to a constraint Ay
on the total number of conditional probabilities.

The FSM statistical model for each stage (m,p) employs a mapping F to determine the state given nn,,
available conditioning symbols. This mapping F is one-to-one and is actually given by a table that contains
the numbers 0,1,..., Sy p — 1, representing each of the possible combinations. Up to this point, the number of
conditioning states for each of the stages is typically large. Many of the corresponding tables of probabilities may
still be empty after the design is completed, thereby occupying memory which can usually be more efficiently used.
Moreover, as mentioned earlier, these empty tables may be visited during actual encoding even though they were
never visited during the design process. Therefore, the last step of the algorithm is to further reduce the number
of conditioning states through quantization. In this work, the PNN algorithm'? has been shown to be successful
in reducing the number of states by orders of magnitude while still bounding the loss in entropy performance
to about 1%. The PNN algorithm first merges all of the empty states with the least probable state into one
conditioning state, thereby completely removing empty states. Then, the two conditioning states resulting in
the lowest increase in entropy (when merged) are combined into one conditioning state, and so on until only one
state, which represents one table of first order probabilities, is obtained. Since the objective is to minimize the
complexity-constrained average entropy, the BFOS algorithm is again used, where a much smaller complexity
value N5 is the constraint or criterion.

In the context of medical image compression, quantization of the conditioning states has two important advan-
tages. First, the stage statistical model orders can be allowed to grow to relatively large numbers, which generally
results in significantly lower average entropy because most medical images feature high order global statistical
dependencies. This also incurs a small additional enoding/decoding complexity, since only larger mapping tables
have to be stored/accessed. Second, the merging process improves the robustness of the subband coder because
only global statistics are carried through, and the possibility of a strong mismatch between individual medical
images and the subband coder is less likely.

4 EXPERIMENTAL RESULTS

A total of 90 axial slice CT head images with no abnormal findings were used for training and testing. Images
were selected retrospectively from studies of 10 patients undergoing scans as a part of their clinical care. A General
Electric (Waukasha, Wi) Hi-Lite Advantage CT scanner was used to produce all images which were either 3 mm
(posterior fossa, 120 kVp, 320 mAs) or 5 mm (mid-brain, 120kVp, 240 mAs) thick slices. All images were of size
512 x 512 with 12 bit/pixel amplitude resolution. No special image processing or reconstruction algorithms were
applied. Each image was extracted from the CT scanner’s proprietary database using software tools supplied
by the manufacturer. Subsequently, the proprietary header information was removed and the raw images were
stored with 16-bit amplitude precision. A set of 12 slice images was kept for testing, and was not used as part of
the training sequence.



Two experiments were performed. The first investigated the performance of the spatial subband coder, while
the second considered exploiting both spatial and inter-slice dependencies within the CT image sequence. In both
experiments, each slice image was first fed into a 2-level balanced tree structured filter bank, producing 16 image
subbands. The A1l allpass polyphase exact reconstruction IIR filters'4 were used in our simulations. Many other
filters, such as the Johnston 16-tap and 32-tap QMFs'® and the Daubechies 32-tap wavelet filters,'® were tested
and were found to be inappropriate. The SNR. reconstruction performance of these filters for the test CT images
did not exceed 52 dB even when quantization was not performed. This is unsatisfactory in light of the fact that
the medical community demands a SNR reconstruction performance that is usually 50 dB or higher.

In this work, we employ a vector size of 1 x 1 (scalar quantizer). Although k-dimensional vector quantizers
are potentially better than scalar quantizers, their complexity is very large. Thus we found scalar quantizers to
be more appropriate, particularly cons'idering the high rates of operation. To initialize the design algorithm, a
multistage residual scalar quantizer (RSQ) is obtained for each subband image, as described in reference.? The
number of scalars in each RSQ stage codebook is set to 3. Non-uniform stage codebook sizes were considered, but
no significant improvement in rate-distortion performance was obtained. Furthermore, choosing a uniform stage
codebook size for all RSQs in all subbands simplifies both quantization and arithmetic encoding/decoding. We
have also tried stage codebooks of sizes 2,3,4,5, ... and have determined that 3-scalar stage codebooks provide
the best complexity-performance tradeoffs for the training CT sequence.

In both experiments, dynamic M-search with a fixed threshold of 10 was used in the encoder optimization.
Moreover, a joint decoder optimization between stages only is used in both cases. In other words, no joint
optimization between subband decoders is performed. During the statistical modeling procedure, the value of N}
was set to 8192, and the value of Ny was set to 1024. For each state of the FSM model at stage (m,p), only
two probabilities, quantized to values between 1 and 256, are needed by each adaptive arithmetic coder. Since
the probabilities are constrained to be powers of 2, no multiplications are necessary in the implementation of
the arithmetic encoders/decoders. Dynamic adaptation!” was performed to further lower the bit rate. Although
good performance high rate coders typically require a large design complexity, such is not the case in the first
experiment. About 12 CPU hours on a Sparc 10 Sun Station were required to design subband coders operating
at rates between 0.80 and 2.0 bpp. However, the design complexity in the second experiment is relatively large.
More specifically, more than two days in CPU time were required to design the same number of codebooks and
corresponding entropy coders. This is due to the fact that inter-slice conditioning requires that a much larger
region of support be used, which complicates statistical modeling.

The encoding/decoding complexity and memory of the CT image subband coder are relatively small. The
memory required to store all codebooks for each rate-distortion point is only 1152 bytes, while that required to
store the conditional probabilities is approximately 1024 bytes. Furthermore, the average number of operations
(multiplies/adds) required for encoding is 14.64 per input sample. Decoding requires 10 multiplies/adds. By
placing some constraints on the coder, encoding/decoding can also be implemented without multiplications.
However, such constraints also affect the rate-distortion performance. Full evaluation of a multiplication-free
implementation of this subband coder for medical image compression is the subject of further research.

The objective quality of the reconstructed CT slice images is very good. Table 1 shows rates and SNRs for
all 12 test CT slice images for average rates of 2.00, 1.50, 1.0 and 0.80 bpp, corresponding to compression ratios
of 6:1,8:1,12:1, and 15 : 1, respectively. The SNR is defined by

YN M (2, 5) — £(i, 5))?
S M (26, 5) - p)?

where N x M is the number of samples in the image, z(4, j) and &(¢, §) represent the original and the coded value
(respectively) of the (i, j)th sample, and p is the mean of 2(4, j). Figure 3(a) shows the original slice image # 11.
Figure 3(b) shows the residual image formed by taking the absolute difference between the original image and the
reconstructed one at a bit rate of 0.73 bpp. Note that the intensities of the residual image have been magnified
by a factor of 16. Finally, Table 2 compares the bit rates and SNRs of the first and second experiments for the

SNR= —lOlogm (1)



6:1 8:1 12:1 15:1
BR [ SNR | BR [ SNR | BR | SNR | BR | SNR
SLICE #1 | 2.16 | 56.83 | 1.75 | 52.89 | 1.13 | 48.75 | 0.89 | 46.35
SLICE #2 | 2.12 [ 57.06 | 1.61 | 52.99 | 1.12 | 48.64 | 0.92 | 46.50
SLICE #3 .00 | 57.11 | 1.67 | 53.05 | 1.16 | 48.77 | 0.89 | 46.41
SLICE #4 | 2.11 | 56.97 | 1.59 | 52.89 | 1.05 | 48.61 | 0.83 | 46.24
SLICE #5 | 1.99 | 57.27 | 1.42 | 53.00 | 0.98 | 48.90 | 0.79 | 46.62
SLICE #6 | 2.01 | 57.13 | 1.46 | 52.92 | 1.01 | 48.83 | 0.80 | 46.59
SLICE #7 | 2.03 | 57.18 | 1.48 | 52.94 | 1.02 | 48.82 | 0.82 | 46.54
SLICE #8 | 2.01 | 57.31 | 1.45 | 53.03 | 0.95 | 48.89 | 0.80 | 46.62
SLICE #9 | 1.94 | 57.35 | 1.39 | 53.10 | 1.02 | 48.86 | 0.77 | 46.61
SLICE #10 | 1.89 | 57.33 | 1.42 | 53.03 | 0.98 | 48.84 | 0.74 | 46.58
SLICE #11 | 1.84 | 57.36 | 1.38 | 53.06 | 0.93 | 48.89 | 0.73 | 46.65
SLICE #12 | 1.84 | 57.13 | 1.33 | 52.88 | 0.90 | 48.93 | 0.71 | 46.

Table 1: Bit rate (BR) in bits per pixel (bpp) and signal-to-noise ratio (SNR) in decibels (dB) for the 13 slice
images used in the first experiment at compression ratios of 6:1, 8:1, 12:1, and 15:1.

6:1 15:1
BR | SNR | BR | SNR
Non-inter-slice | 1.84 | 57.36 | 0.73 | 46.65
Inter-slice 1.71 | 57.29 | 0.68 | 46.68

Table 2: Bit rate (BR) in bits per pixel (bpp) and signal-to-noise ratio (SNR) in decibels (dB) for the slice image
#11 at compression ratios of 6:1 and 15:1.



slice image # 11 at the two 6 : 1 and 15 : 1 compression ratios. Looking at Table 2, one can see that inter-slice
conditioning resulted in a 7 % decrease in bit rate roughly for approximately the same objective quality.

Compressed and reconstructed images of the non-inter-slice conditioning experiment were also viewed by an
experienced radiologist for his impressions. Viewing was performed in a low-light environment. Images were
displayed on an Image Systems M21PMAX 1280 x 1024 display using a Dome MD2kEISA display controller on
a DELL Omniplex Pentium personal computer running MS-DOS 6.21 and an image viewing software customized
from DOME’s software library. The same series of 12 images, each compressed at 6:1, 8:1 and 12:1, were used.
For each image viewing, the original image and a single compressed-reconstructed image were displayed together.
All images compressed at 6:1 were viewed first, followed by the 8:1 and the 12:1 images, respectively. The
radiologist was allowed to adjust window and level settings and no time constraints were imposed. The radiologist’s
impression was solicited. The radiologist reported no noticeable difference between the original image and the 6:1
or 8:1 compressed-reconstructed images. For two of the twelve 12:1 compressed-reconstructed images the observer
noted slight enhancement of the high frequency component (noise) of the compressed-reconstructed image.

5 CONCLUSIONS

The results of the preliminary viewing of the compressed-reconstructed images by a radiologist were encour-
aging. We are currently conducting more rigorous observer performance tests to determine objectively the per-
formance of radiologists using the compressed-reconstructed images. The computational complexity and memory
requirements make this coder a suitable candidate for implementation in real-time hardware.

6 ACKNOWLEDGMENTS

The authors would like to acknowledge J. Kevin Smith, M.D., Ph.D. for his assistance. The first author would
also like to acknowledge Wilson C. Chung for supplying software implementations for the various filters studied
in this paper.

7 REFERENCES

[1] J. W. Woods, ed., Subband Image Coding. Norwell, MA: Kluwer Academic Publishers, 1991.

[2] F. Kossentini, W. Chung, and M. Smith, “Subband image coding with jointly optimized quantizers,” in Proc.
IEEE Int. Conf. Acoust., Speech, and Signal Processing, (Detroit, MI, USA), Apr. 1995.

[3] F. Kossentini, W. Chung, and M. Smith, “A jointly optimized subband coder,” Submitted to Transactions
on Image Processing, July 1994.

[4] B. H. Juang and A. H. Gray, “Multiple stage vector quantization for speech coding,” in Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 597-600, April 1982.

[5] F. Kossentini, M. Smith, and C. Barnes, “Necessary conditions for the optimality of variable rate residual
vector quantizers,” Submitted to Transactions on Information Theory in June 1993. Revised in May 1994.

[6] G. Langdon, “An introduction to arithmetic coding,” IBM J. Res. Dev., vol. 28, pp. 135-149, Mar. 1984.
[7] A. C. Popat, Scalar Quantization with Arithmetic Coding. PhD thesis, M.L.T., Cambridge, MA, 1986.
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Figure 3: The original slice image #11 and the corresponding residual image at a bit rate of 0.73 bpp. Intensities
of the residual image have been magnified by a factor of 16.



[8] A. Docef, F. Kossentini, W. Chung, and M. Smith, “Multiplication-free subband coding of color images,” in
Data Compression Conference, (Snowbird, UT, USA), Mar. 1995.

[9] F. Kossentini and M. Smith, “A fast searching technique for residual vector quantizers,” Signal Processing
Letters, vol. 1, pp. 114-116, July 1994.

[10] P. A. Chou, T. Lookabaugh, and R. M. Gray, “Entropy-constrained vector quantization,” IEEE Transactions
on Acoustics, Speech and Signal Processing, vol. ASSP-37(1), pp. 31-42, Jan. 1989.

[11] F. Kossentini, M. Smith, and C. Barnes, “Entropy-constrained residual vector quantization,” in Proc. IEEE
Int. Conf. Acoust., Speech, and Signal Processing, vol. V, (Minneapolis, MN, USA), pp. 598-601, Apr. 1993.

[12] E. A. Riskin, “Optimal bit allocation via the generated BFOS algorithm,” IEEE Trans. on Information
Theory, vol. 37, pp. 400-402, Mar. 1991.

[13] W. H. Equitz, “New vector quantization clustering algorithm,” IEEE Trans. on Acoustics, Speech, and Signal
Processing, vol. 37, pp. 1568-1575, Oct. 1989.

[14] M. Smith and S. Eddins, “Analysis/synthesis techniques for subband image coding,” IEEE Trans. on Acous-
tics, Speech, and Signal Processing, vol. 38, pp. 1446-1456, Aug. 1991.

[15] J. Johnston, “A filter family designed for use in quadrature mirror filter banks,” Proc. IEEE Int. Conf.
Acoust., Speech, and Signal Processing, pp. 291-294, April 1980.

[16] 1. Daubechies, Ten Lectures on Wavelets. Philadelphia, Pennsylvania: SIAM, 1992.

[17] G. G. Langdon and J. Rissanen, “Compression of black-white images with arithmetic coding,” IEEE Trans-
actions on Communications, vol. 29, no. 6, pp. 858-867, 1981.



